Simulación de la difusión

prev.gif (1231 bytes)home.gif (1232 bytes)next.gif (1211 bytes)

Fenómenos de transporte
Conducción del calor
Simulación de la
conducción
Difusión unidimensional
marca.gif (847 bytes)Simulación de la difusión
Movimiento browniano
Sedimentación
java.gif (886 bytes) Mecanismo básico

java.gif (886 bytes) Simulación de la difusión unidimensional

 

Mecanismo básico

Crearemos un modelo simplificado que explique el establecimiento de un flujo de partículas entre elementos adyacentes de un medio cuando existe entre dos puntos del mismo un gradiente de concentración

Cuando se ponen en comunicación dos recipientes iguales que contienen distinto número de partículas, se alcanza el equilibrio cuando el número de partículas es el mismo en cada recipiente. El equilibrio no es estático sino dinámico ya que los recipientes pueden intercambiar partículas a nivel microscópico, aunque dicho intercambio tiene lugar en ambas direcciones, no habiendo en promedio intercambio neto en ninguna de las dos.

Difus_2.gif (1804 bytes)

Para simular la difusión de un gas entre dos recipientes iguales, se emplea el siguiente procedimiento:

La probabilidad de que una molécula en su movimiento desordenado debido al choque con otras moléculas y con las paredes del recipiente pase del primer recipiente al segundo es proporcional al número de moléculas que hay en el primer recipiente, naturalmente, la probabilidad de que una molécula del segundo recipiente pase al primero es proporcional al número de moléculas del segundo.

El número final de partículas en cada recipiente no es fijo, sino que fluctúa en torno al de equilibrio, las fluctuaciones como podemos comprobar disminuyen al incrementar el número de partículas.

Cuando se abre a llave de paso, entre dos recipientes, uno que contiene gas y el otro inicialmente vacío, el gas pasa del primero hacia el segundo hasta que se establece el equilibrio. El proceso es irreversible, en el sentido de que no observamos nunca el proceso inverso. Como podemos apreciar en la simulación la irreversibilidad significa la improbabilidad de alcanzar el estado inicial desde el estado final de equilibrio. Esta improbabilidad como veremos se debe al gran número de constituyentes del sistema. Para comprobarlo, podemos situar un número pequeño de partículas en el primer recipiente 5 ó 6, y podemos observar que en alguna ocasión esas partículas se acumulan en el segundo recipiente o regresan al primero. Sin embargo, cuando el número de partículas es grande 100, 200, etc. observaremos que es muy improbable que volvamos a ver todas las partículas en el estado inicial de no equilibrio.

El número de partículas en un sistema real es muy elevado, un mol de cualquier sustancia contiene 6.02 1023 moléculas. Por tanto, la simulación se debe de considerar como una imagen cualitativa de lo que ocurre en un sistema real, en el que el carácter dinámico del equilibrio, y las fluctuaciones son muy difíciles de observar.

 

Actividades

  • Introducir el número de partículas N1 del primer recipiente.
  • Introducir el número de partículas N2 del segundo recipiente.
  • Pulsar en el botón titulado Empieza para comenzar el proceso de intercambio de partículas entre ambos subsistemas. Se observa la representación del número de partículas de cada subsistema (eje vertical) en función del tiempo (eje horizontal).
  • Pulsar en el botón titulado Pausa para parar momentáneamente el proceso. Volver a pulsar en el mismo botón titulado ahora Continua para reanudarlo.
  • Pulsar en el botón Paso, para seguir el proceso paso a paso. Pulsar en el botón Continua para reanudarlo de nuevo.

 

Cuestiones

  1. Describir la evolución hacia el estado de equilibrio de dos subsistemas cuando se establece comunicación entre ambos.
  1. Calcular el número de partículas de cada recipiente en el estado de equilibrio, completando una tabla semejante a la siguiente.
N1 N2 Neq
200 0  
40 0  
     
     
  1.   Observar la importancia de las fluctuaciones en torno al estado de equilibrio (grandes, pequeñas, etc.), cuando los subsistemas están constituidos por un número grande de partículas, o por un número pequeño de partículas.

 

DifusionApplet1 aparecerá en un explorador compatible con JDK 1.1
                   
 

Simulación de la difusión unidimensional

Para la simulación del fenómeno de la difusión procederemos de modo análogo a la conducción térmica a lo largo de una barra metálica. Dividimos el espacio unidimensional en intervalos (cajas). Colocamos un número elevado de partículas en la caja que tomamos como origen, y aplicamos el modelo anterior para la difusión de partículas entre elementos contiguos. Luego, observaremos como las partículas pasan de una caja a otra a medida que transcurre el tiempo. Un diagrama de barras nos representa la proporción de partículas que hay en cada caja.

La simulación explica las facetas esenciales de la descripción matemática del proceso de disfusión:

  1. Hay flujo neto de partículas siempre que haya una diferencia en el número de partículas que contienen dos cajas adyacentes, y este flujo es tanto más intenso cuanto mayor sea dicha diferencia (ley de Fick).
  2. En cada caja entra en la unidad de tiempo un número determinado de partículas y sale otro número de partículas. Si es mayor el primero que el segundo se incrementa el número de partículas de la caja en la unidad de tiempo (ecuación de la difusión).

 

Actividades

  • Pulsar en el botón titulado Empieza para comenzar la simulación.
  • Pulsar en el botón titulado Pausa para parar momentáneamente el proceso. Pulsar el mismo botón titulado ahora Continua para reaunudarlo.

Para obtener la distribución de partículas en cada subsistema se puede hacer de dos formas:

  1. Cuando lo desee el usuario pulsando el botón titulado Manual.
  2. De forma automática (la casilla de verificación está activada) cada cierto número de pasos que el usuario puede cambiar, indicados por el control de edición titulado Automático. El número de pasos totales (tiempo) del proceso se muestra en la parte superior derecha de la ventana del applet.

La representación gráfica del número de la partículas en cada subsistema en el que se ha dividido el eje X, se muestra mediante dos curvas. La distribución actual en color rojo, y la distribución obtenida previamente en color azul. Comparando ambas distribuciones podemos reconocer qué elementos van ganando partículas y qué elementos las van perdiendo a medida que avanza el proceso.

DifusionApplet2 aparecerá en un explorador compatible JDK 1.1